
ASSIST :

A General Purpose Addition to REDUCE

Version 2.3

Hubert Caprasse
Département d’Astronomie et d’Astrophysique

Institut de Physique, B–5, Sart Tilman
B–4000 LIEGE 1

E–mail: caprasse@vm1.ulg.ac.be

August 25, 2004

1 Introduction

The package ASSIST contains an appreciable number of additional general
purpose functions which allow one to better adapt REDUCE to various
calculational strategies, to make the programming task more straightforward
and, sometimes, more efficient.

In contrast with all other packages, ASSIST does not aim to provide either
a new facility to compute a definite class of mathematical objects or to
extend the base of mathematical knowledge of REDUCE . The functions
it contains should be useful independently of the nature of the application
which is considered. They were initially written while applying REDUCE
to specific problems in theoretical physics. Most of them were designed in
such a way that their applicability range is broad. Though it was not the
primary goal, efficiency has been sought whenever possible.

The source code in ASSIST contains many comments concerning the mean-
ing and use of the supplementary functions available in the algebraic mode.
These comments, hopefully, make the code transparent and allow a thor-
ough exploitation of the package. The present documentation contains a

1

2 SURVEY OF THE AVAILABLE NEW FACILITIES 2

non–technical description of it and describes the various new facilities it
provides.

2 Survey of the Available New Facilities

An elementary help facility is available both within the MS-DOS and Win-
dows environments. It is independent of the help facility of REDUCE itself.
It includes two functions:

ASSIST is a function which takes no argument. If entered, it returns the
informations required for a proper use of ASSISTHELP.
ASSISTHELP takes one argument.

i. If the argument is the identifier assist, the function returns the infor-
mation necessary to retrieve the names of all the available functions.

ii. If the argument is an integer equal to one of the section numbers of
the present documentation. The names of the functions described in
that section are obtained.
There is, presently, no possibility to retrieve the number and the type
of the arguments of a given function.

The package contains several modules. Their content reflects closely the
various categories of facilities listed below. Some functions do already exist
inside the KERNEL of REDUCE . However, their range of applicability is
extended.

• Control of Switches:

SWITCHES SWITCHORG

• Operations on Lists and Bags:

MKLIST KERNLIST ALGNLIST LENGTH
POSITION FREQUENCY SEQUENCES SPLIT
INSERT INSERT KEEP ORDER MERGE LIST
FIRST SECOND THIRD REST REVERSE LAST
BELAST CONS (.) APPEND APPENDN
REMOVE DELETE DELETE ALL DELPAIR
MEMBER ELMULT PAIR DEPTH MKDEPTH ONE
REPFIRST REPREST ASFIRST ASLAST ASREST

2 SURVEY OF THE AVAILABLE NEW FACILITIES 3

ASFLIST ASSLIST RESTASLIST SUBSTITUTE
BAGPROP PUTBAG CLEARBAG BAGP BAGLISTP
ALISTP ABAGLISTP LISTBAG

• Operations on Sets:

MKSET SETP UNION INTERSECT DIFFSET SYMDIFF

• General Purpose Utility Functions:

LIST TO IDS MKIDN MKIDNEW DELLASTDIGIT DETIDNUM
ODDP FOLLOWLINE == RANDOMLIST MKRANDTABL
PERMUTATIONS CYCLICPERMLIST PERM TO NUM NUM TO PERM
COMBNUM COMBINATIONS SYMMETRIZE REMSYM
SORTNUMLIST SORTLIST ALGSORT EXTREMUM GCDNL
DEPATOM FUNCVAR IMPLICIT EXPLICIT REMNONCOM
KORDERLIST SIMPLIFY CHECKPROPLIST EXTRACTLIST

• Properties and Flags:

PUTFLAG PUTPROP DISPLAYPROP DISPLAYFLAG
CLEARFLAG CLEARPROP

• Control Statements, Control of Environment:

NORDP DEPVARP ALATOMP ALKERNP PRECP
SHOW SUPPRESS CLEAROP CLEARFUNCTIONS

• Handling of Polynomials:

ALG TO SYMB SYMB TO ALG
DISTRIBUTE LEADTERM REDEXPR MONOM
LOWESTDEG DIVPOL SPLITTERMS SPLITPLUSMINUS

• Handling of Transcendental Functions:

TRIGEXPAND HYPEXPAND TRIGREDUCE HYPREDUCE

• Coercion from Lists to Arrays and converse:

LIST TO ARRAY ARRAY TO LIST

• Handling of n-dimensional Vectors:

SUMVECT MINVECT SCALVECT CROSSVECT MPVECT

• Handling of Grassmann Operators:

PUTGRASS REMGRASS GRASSP GRASSPARITY GHOSTFACTOR

• Handling of Matrices:

3 CONTROL OF SWITCHES 4

UNITMAT MKIDM BAGLMAT COERCEMAT
SUBMAT MATSUBR MATSUBC RMATEXTR RMATEXTC
HCONCMAT VCONCMAT TPMAT HERMAT
SETELTMAT GETELTMAT

• Control of the HEPHYS package:

REMVECTOR REMINDEX MKGAM

In the following all these functions are described.

3 Control of Switches

The two available functions i.e. SWITCHES, SWITCHORG have no argument
and are called as if they were mere identifiers.

SWITCHES displays the actual status of the most frequently used switches
when manipulating rational functions. The chosen switches are

EXP, ALLFAC, EZGCD, GCD, MCD, LCM, DIV, RAT,
INTSTR, RATIONAL, PRECISE, REDUCED, RATIONALIZE,
COMBINEEXPT, COMPLEX, REVPRI, DISTRIBUTE.

The selection is somewhat arbitrary but it may be changed in a trivial
fashion by the user.

The new switch DISTRIBUTE allows one to put polynomials in a distributed
form (see the description below of the new functions for manipulating them.).

Most of the symbolic variables !*EXP, !*DIV, . . . which have either the
value T or the value NIL are made available in the algebraic mode so that
it becomes possible to write conditional statements of the kind

IF !*EXP THEN DO

IF !*GCD THEN OFF GCD;

SWITCHORG resets the switches enumerated above to the status they had
when starting REDUCE .

4 MANIPULATION OF THE LIST STRUCTURE 5

4 Manipulation of the List Structure

Additional functions for list manipulations are provided and some already
defined functions in the kernel of REDUCE are modified to properly gener-
alize them to the available new structure BAG.

i. Generation of a list of length n with all its elements initialized to 0
and possibility to append to a list l a certain number of zero’s to make
it of length n:

MKLIST n ; n is an INTEGER

MKLIST(l,n); l is List-like, n is an INTEGER

ii. Generation of a list of sublists of length n containing p elements equal
to 0 and q elements equal to 1 such that

p + q = n.

The function SEQUENCES works both in algebraic and symbolic modes.
Here is an example in the algebraic mode:

SEQUENCES 2 ; ==> {{0,0},{0,1},{1,0},{1,1}}

An arbitrary splitting of a list can be done. The function SPLIT gen-
erates a list which contains the splitted parts of the original list.

SPLIT({a,b,c,d},{1,1,2}) ==> {{a},{b},{c,d}}

The function ALGNLIST constructs a list which contains n copies of a
list bound to its first argument.

ALGNLIST({a,b,c,d},2); ==> {{a,b,c,d},{a,b,c,d}}

The function KERNLIST transforms any prefix of a kernel into the list
prefix. The output list is a copy:

4 MANIPULATION OF THE LIST STRUCTURE 6

KERNLIST (<kernel>); ==> {<kernel arguments>}

Four functions to delete elements are DELETE, REMOVE, DELETE ALL
and DELPAIR. The first two act as in symbolic mode, and the third
eliminates from a given list all elements equal to its first argument.
The fourth acts on a list of pairs and eliminates from it the first pair
whose first element is equal to its first argument :

DELETE(x,{a,b,x,f,x}); ==> {a,b,f,x}

REMOVE({a,b,x,f,x},3); ==> {a,b,f,x}

DELETE_ALL(x,{a,b,x,f,x}); ==> {a,b,f}

DELPAIR(a,{{a,1},{b,2},{c,3}}; ==> {{b,2},{c,3}}

iv. The function ELMULT returns an integer which is the multiplicity of
its first argument inside the list which is its second argument. The
function FREQUENCY gives a list of pairs whose second element indicates
the number of times the first element appears inside the original list:

ELMULT(x,{a,b,x,f,x}) ==> 2

FREQUENCY({a,b,c,a}); ==> {{a,2},{b,1},{c,1}}

v. The function INSERT allows one to insert a given object into a list at
the desired position.

The functions INSERT KEEP ORDER and MERGE LIST allow one to keep a
given ordering when inserting one element inside a list or when merging
two lists. Both have 3 arguments. The last one is the name of a binary
boolean ordering function:

ll:={1,2,3}$

INSERT(x,ll,3); ==> {1,2,x,3}

4 MANIPULATION OF THE LIST STRUCTURE 7

INSERT_KEEP_ORDER(5,ll,lessp); ==> {1,2,3,5}

MERGE_LIST(ll,ll,lessp); ==> {1,1,2,2,3,3}

Notice that MERGE LIST will act correctly only if the two lists are well
ordered themselves.

vi. Algebraic lists can be read from right to left or left to right. They
look symmetrical. One would like to dispose of manipulation functions
which reflect this. So, to the already defined functions FIRST and REST
are added the functions LAST and BELAST. LAST gives the last element
of the list while BELAST gives the list without its last element.
Various additional functions are provided. They are:

. (‘‘dot’’), POSITION, DEPTH, MKDEPTH ONE,
PAIR, APPENDN, REPFIRST, REPREST

The token “dot” needs a special comment. It corresponds to several
different operations.

1. If one applies it on the left of a list, it acts as the CONS function.
Note however that blank spaces are required around the dot:

4 . {a,b}; ==> {4,a,b}

2. If one applies it on the right of a list, it has the same effect as
the PART operator:

{a,b,c}.2; ==> b

3. If one applies it to a 4–dimensional vectors, it acts as in the
HEPHYS package.

POSITION returns the POSITION of the first occurrence of x in a list
or a message if x is not present in it.

DEPTH returns an integer equal to the number of levels where a list is
found if and only if this number is the same for each element of the
list otherwise it returns a message telling the user that the list is of
unequal depth. The function MKDEPTH ONE allows to transform any list
into a list of depth equal to 1.

4 MANIPULATION OF THE LIST STRUCTURE 8

PAIR has two arguments which must be lists. It returns a list whose
elements are lists of two elements. The nth sublist contains the nth

element of the first list and the nth element of the second list. These
types of lists are called association lists or ALISTS in the following. To
test for these type of lists a boolean function ABAGLISTP is provided.
It will be discussed below.
APPENDN has any fixed number of lists as arguments. It generalizes
the already existing function APPEND which accepts only two lists as
arguments. It may also be used for arbitrary kernels but, in that case,
it is important to notice that the concatenated object is always a list.
REPFIRST has two arguments. The first one is any object, the second
one is a list. It replaces the first element of the list by the object. It
works like the symbolic function REPLACA except that the original list
is not destroyed.
REPREST has also two arguments. It replaces the rest of the list by its
first argument and returns the new list without destroying the origi-
nal list. It is analogous to the symbolic function REPLACD. Here are
examples:

ll:={{a,b}}$
ll1:=ll.1; ==> {a,b}
ll.0; ==> list
0 . ll; ==> {0,{a,b}}

DEPTH ll; ==> 2

PAIR(ll1,ll1); ==> {{a,a},{b,b}}

REPFIRST{new,ll); ==> {new}

ll3:=APPENDN(ll1,ll1,ll1); ==> {a,b,a,b,a,b}

POSITION(b,ll3); ==> 2

REPREST(new,ll3); ==> {a,new}

vii. The functions ASFIRST, ASLAST, ASREST, ASFLIST, ASSLIST,
RESTASLIST act on ALISTS or on lists of lists of well defined depths

4 MANIPULATION OF THE LIST STRUCTURE 9

and have two arguments. The first is the key object which one seeks
to associate in some way with an element of the association list which
is the second argument.
ASFIRST returns the pair whose first element is equal to the first ar-
gument.
ASLAST returns the pair whose last element is equal to the first argu-
ment.
ASREST needs a list as its first argument. The function seeks the first
sublist of a list of lists (which is its second argument) equal to its first
argument and returns it.
RESTASLIST has a list of keys as its first argument. It returns the col-
lection of pairs which meet the criterium of ASREST.
ASFLIST returns a list containing all pairs which satisfy the criteria of
the function ASFIRST. So the output is also an association list.
ASSLIST returns a list which contains all pairs which have their second
element equal to the first argument.
Here are a few examples:

lp:={{a,1},{b,2},{c,3}}$

ASFIRST(a,lp); ==> {a,1}

ASLAST(1,lp); ==> {a,1}

ASREST({1},lp); ==> {a,1}

RESTASLIST({a,b},lp); ==> {{1},{2}}

lpp:=APPEND(lp,lp)$

ASFLIST(a,lpp); ==> {{a,1},{a,1}}

ASSLIST(1,lpp); ==> {{a,1},{a,1}}

vii. The function SUBSTITUTE has three arguments. The first is the object
to be substituted, the second is the object which must be replaced
by the first, and the third is the list in which the substitution must
be made. Substitution is made to all levels. It is a more elementary

5 THE BAG STRUCTURE AND ITS ASSOCIATED FUNCTIONS 10

function than SUB but its capabilities are less. When dealing with alge-
braic quantities, it is important to make sure that all objects involved
in the function have either the prefix lisp or the standard quotient
representation otherwise it will not properly work.

5 The Bag Structure and its Associated Functions

The LIST structure of REDUCE is very convenient for manipulating groups
of objects which are, a priori, unknown. This structure is endowed with
other properties such as “mapping” i.e. the fact that if OP is an operator
one gets, by default,

OP({x,y}); ==> {OP(x),OP(y)}

It is not permitted to submit lists to the operations valid on rings so that,
for example, lists cannot be indeterminates of polynomials.
Very frequently too, procedure arguments cannot be lists. At the other ex-
treme, so to say, one has the KERNEL structure associated with the algebraic
declaration operator . This structure behaves as an “unbreakable” one
and, for that reason, behaves like an ordinary identifier. It may generally
be bound to all non-numeric procedure parameters and it may appear as an
ordinary indeterminate inside polynomials.
The BAG structure is intermediate between a list and an operator. From the
operator it borrows the property of being a KERNEL and, therefore, may be
an indeterminate of a polynomial. From the list structure it borrows the
property of being a composite object.

Definition:

A bag is an object endowed with the following properties:

1. It is a KERNEL i.e. it is composed of an atomic prefix (its envelope)
and its content (miscellaneous objects).

2. Its content may be handled in an analogous way as the content of a
list. The important difference is that during these manipulations the
name of the bag is kept.

3. Properties may be given to the envelope. For instance, one may declare
it NONCOM or SYMMETRIC etc. . . .

5 THE BAG STRUCTURE AND ITS ASSOCIATED FUNCTIONS 11

Available Functions:

i. A default bag envelope BAG is defined. It is a reserved identifier. An
identifier other than LIST or one which is already associated with
a boolean function may be defined as a bag envelope through the
command PUTBAG. In particular, any operator may also be declared
to be a bag. When and only when the identifier is not an already
defined function does PUTBAG put on it the property of an OPERATOR
PREFIX. The command:

PUTBAG id1,id2,....idn;

declares id1,.....,idn as bag envelopes. Analogously, the command

CLEARBAG id1,...idn;

eliminates the bag property on id1,...,idn.

ii. The boolean function BAGP detects the bag property. Here is an ex-
ample:

aa:=bag(x,y,z)$

if BAGP aa then "ok"; ==> ok

iii. The functions listed below may act both on lists or bags. Moreover,
functions subsequently defined for SETS also work for a bag when its
content is a set. Here is a list of the main ones:

FIRST, SECOND, LAST, REST, BELAST, DEPTH, LENGTH, REVERSE,
MEMBER, APPEND, . (‘‘dot’’), REPFIRST, REPREST . . .

However, since they keep track of the envelope, they act somewhat
differently. Remember that

the NAME of the ENVELOPE is KEPT by the functions
FIRST, SECOND and LAST.

Here are a few examples (more examples are given inside the test file):

5 THE BAG STRUCTURE AND ITS ASSOCIATED FUNCTIONS 12

PUTBAG op; ==> T

aa:=op(x,y,z)$

FIRST op(x,y,z); ==> op(x)

REST op(x,y,z); ==> op(y,z)

BELAST op(x,y,z); ==> op(x,y)

APPEND(aa,aa); ==> op(x,y,z,x,y,z)

APPENDN(aa,aa,aa); ==> {x,y,z,x,y,z,x,y,z}

LENGTH aa; ==> 3

DEPTH aa; ==> 1

MEMBER(y,aa); ==> op(y,z)

When “appending” two bags with different envelopes, the resulting
bag gets the name of the one bound to the first parameter of APPEND.
When APPENDN is used, the output is always a list.
The function LENGTH gives the number of objects contained in the bag.

iv. The connection between the list and the bag structures is made easy
thanks to KERNLIST which transforms a bag into a list and thanks to
the coercion function LISTBAG which transforms a list into a bag. This
function has 2 arguments and is used as follows:

LISTBAG(<list>,<id>); ==> <id>(<arg_list>)

The identifier <id>, if allowed, is automatically declared as a bag en-
velope or an error message is generated.
Finally, two boolean functions which work both for bags and lists are
provided. They are BAGLISTP and ABAGLISTP. They return t or nil
(in a conditional statement) if their argument is a bag or a list for the

6 SETS AND THEIR MANIPULATION FUNCTIONS 13

first one, or if their argument is a list of sublists or a bag containing
bags for the second one.

6 Sets and their Manipulation Functions

Functions for sets exist at the level of symbolic mode. The package makes
them available in algebraic mode but also generalizes them so that they can
be applied to bag-like objects as well.

i. The constructor MKSET transforms a list or bag into a set by eliminating
duplicates.

MKSET({1,a,a}); ==> {1,a}
MKSET bag(1,a,1,a); ==> bag(1,a)

SETP is a boolean function which recognizes set–like objects.

if SETP {1,2,3} then ... ;

ii. The available functions are

UNION, INTERSECT, DIFFSET, SYMDIFF.

They have two arguments which must be sets otherwise an error mes-
sage is issued. Their meaning is transparent from their name. They
respectively give the union, the intersection, the difference and the
symmetric difference of two sets.

7 General Purpose Utility Functions

Functions in this sections have various purposes. They have all been used
many times in applications in some form or another. The form given to
them in this package is adjusted to maximize their range of applications.

i. The functions MKIDNEW DELLASTDIGIT DETIDNUM LIST TO IDS han-
dle identifiers.

MKIDNEW has either 0 or 1 argument. It generates an identifier which
has not yet been used before.

7 GENERAL PURPOSE UTILITY FUNCTIONS 14

MKIDNEW(); ==> g0001

MKIDNEW(a); ==> ag0002

DELLASTDIGIT takes an integer as argument and strips it from its last
digit.

DELLASTDIGIT 45; ==> 4

DETIDNUM deletes the last digit from an identifier. It is a very conve-
nient function when one wants to make a do loop starting from a set
of indices a1, . . . , an.

DETIDNUM a23; ==> 23

LIST to IDS generalizes the function MKID to a list of atoms. It creates
and intern an identifier from the concatenation of the atoms. The first
atom cannot be an integer.

LIST_TO_IDS {a,1,id,10}; ==> a1id10

The function ODDP detects odd integers.

The function FOLLOWLINE is convenient when using the function PRIN2.
It allows one to format output text in a much more flexible way than
with the function WRITE.
Try the following examples :

<<prin2 2; prin2 5>>$ ==> ?

<<prin2 2; followline(5); prin2 5;>>; ==> ?

The function == is a short and convenient notation for the SET func-
tion. In fact it is a generalization of it to allow one to deal also with
KERNELS:

7 GENERAL PURPOSE UTILITY FUNCTIONS 15

operator op;

op(x):=abs(x)$

op(x) == x; ==> x

op(x); ==> x

abs(x); ==> x

The function RANDOMLIST generates a list of random numbers. It takes
two arguments which are both integers. The first one indicates the
range inside which the random numbers are chosen. The second one
indicates how many numbers are to be generated. Its output is the
list of generated numbers.

RANDOMLIST(10,5); ==> {2,1,3,9,6}

MKRANDTABL generates a table of random numbers. This table is either
a one or two dimensional array. The base of random numbers may
be either an integer or a decimal number. In this last case, to work
properly, the switch rounded must be ON. It has three arguments.
The first is either a one integer or a two integer list. The second is the
base chosen to generate the random numbers. The third is the chosen
name for the generated array. In the example below a two-dimensional
table of random integers is generated as array elements of the identifier
ar.

MKRANDTABL({3,4},10,ar); ==>

*** array ar redefined

{3,4}

The output is the dimension of the constructed array.

PERMUTATIONS gives the list of permutations of n objects. Each per-

7 GENERAL PURPOSE UTILITY FUNCTIONS 16

mutation is itself a list. CYCLICPERMLIST gives the list of cyclic per-
mutations. For both functions, the argument may also be a bag.

PERMUTATIONS {1,2} ==> {{1,2},{2,1}}

CYCLICPERMLIST {1,2,3} ==>

{{1,2,3},{2,3,1},{3,1,2}}

PERM TO NUM and NUM TO PERM allow to associate to a given permuta-
tion of n numbers or identifiers a number between 0 and n! − 1. The
first function has the two permutated lists as its arguments and it re-
turns an integer. The second one has an integer as its first argument
and a list as its second argument. It returns the list of permutated
objects.

PERM_TO_NUM({4,3,2,1},{1,2,3,4}) ==> 23

NUM_TO_PERM(23,{1,2,3,4}); ==> {4,3,2,1}

COMBNUM gives the number of combinations of n objects taken p at a
time. It has the two integer arguments n and p.

COMBINATIONS gives a list of combinations on n objects taken p at a
time. It has two arguments. The first one is a list (or a bag) and the
second one is the integer p.

COMBINATIONS({1,2,3},2) ==> {{2,3},{1,3},{1,2}}

REMSYM is a command that suppresses the effect of the REDUCE com-
mands symmetric or antisymmetric .

SYMMETRIZE is a powerful function which generates a symmetric ex-
pression. It has 3 arguments. The first is a list (or a list of lists)
containing the expressions which will appear as variables for a kernel.
The second argument is the kernel-name and the third is a permuta-
tion function which exists either in algebraic or symbolic mode. This
function may be constructed by the user. Within this package the two

7 GENERAL PURPOSE UTILITY FUNCTIONS 17

functions PERMUTATIONS and CYCLICPERMLIST may be used. Exam-
ples:

ll:={a,b,c}$

SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)

SYMMETRIZE(list ll,op,cyclicpermlist); ==>

OP({A,B,C}) + OP({B,C,A}) + OP({C,A,B})

Notice that, taking for the first argument a list of lists gives rise to
an expression where each kernel has a list as argument. Another pe-
culiarity of this function is the fact that, unless a pattern matching is
made on the operator OP, it needs to be reevaluated. This peculiarity
is convenient when OP is an abstract operator if one wants to control
the subsequent simplification process. Here is an illustration:

op(a,b,c):=a*b*c$

SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)

REVAL ws; ==>

OP(B,C,A) + OP(C,A,B) + A*B*C

for all x let op(x,a,b)=sin(x*a*b);

SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(B,C,A) + SIN(A*B*C) + OP(A,B,C)

The functions SORTNUMLIST and SORTLIST are functions which sort

7 GENERAL PURPOSE UTILITY FUNCTIONS 18

lists. They use the bubblesort and the quicksort algorithms.

SORTNUMLIST takes as argument a list of numbers. It sorts it in in-
creasing order.

SORTLIST is a generalization of the above function. It sorts the list
according to any well defined ordering. Its first argument is the list and
its second argument is the ordering function. The content of the list
need not necessarily be numbers but must be such that the ordering
function has a meaning. ALGSORT exploits the PSL SORT function. It
is intended to replace the two functions above.

l:={1,3,4,0}$ SORTNUMLIST l; ==> {0,1,3,4}

ll:={1,a,tt,z}$ SORTLIST(ll,ordp); ==> {a,z,tt,1}

l:={-1,3,4,0}$ ALGSORT(l,>); ==> {4,3,0,-1}

It is important to realise that using these functions for kernels or bags
may be dangerous since they are destructive. If it is necessary, it is
recommended to first apply KERNLIST to them to act on a copy.

The function EXTREMUM is a generalization of the already defined func-
tions MIN, MAX to include general orderings. It is a 2 argument func-
tion. The first is the list and the second is the ordering function. With
the list ll defined in the last example, one gets

EXTREMUM(ll,ordp); ==> 1

GCDNL takes a list of integers as argument and returns their gcd.

iii. There are four functions to identify dependencies. FUNCVAR takes any
expression as argument and returns the set of variables on which it
depends. Constants are eliminated.

FUNCVAR(e+pi+sin(log(y)); ==> {y}

DEPATOM has an atom as argument. It returns it if it is a number or
if no dependency has previously been declared. Otherwise, it returns
the list of variables which the prevoius DEPEND declarations imply.

7 GENERAL PURPOSE UTILITY FUNCTIONS 19

depend a,x,y;

DEPATOM a; ==> {x,y}

The functions EXPLICIT and IMPLICIT make explicit or implicit the
dependencies. This example shows how they work:

depend a,x; depend x,y,z;

EXPLICIT a; ==> a(x(y,z))

IMPLICIT ws; ==> a

These are useful when one wants to trace the names of the independent
variables and (or) the nature of the dependencies.

KORDERLIST is a zero argument function which displays the actual
ordering.

korder x,y,z;

KORDERLIST; ==> (x,y,z)

iv. A command REMNONCOM to remove the non-commutativity of operators
previously declared non-commutative is available. Its use is like the
one of the command NONCOM.

v. Filtering functions for lists.

CHECKPROPLIST is a boolean function which checks if the elements of
a list have a definite property. Its first argument is the list, its second
argument is a boolean function (FIXP NUMBERP . . .) or an ordering
function (as ORDP).

EXTRACTLIST extracts from the list given as its first argument the ele-
ments which satisfy the boolean function given as its second argument.
For example:

if CHECKPROPLIST({1,2},fixp) then "ok"; ==> ok

7 GENERAL PURPOSE UTILITY FUNCTIONS 20

l:={1,a,b,"st")$

EXTRACTLIST(l,fixp); ==> {1}

EXTRACTLIST(l,stringp); ==> {st}

vi. Coercion.

Since lists and arrays have quite distinct behaviour and storage prop-
erties, it is interesting to coerce lists into arrays and vice-versa in
order to fully exploit the advantages of both datatypes. The functions
ARRAY TO LIST and LIST TO ARRAY are provided to do that easily. The
first function has the array identifier as its unique argument. The sec-
ond function has three arguments. The first is the list, the second is
the dimension of the array and the third is the identifier which defines
it. If the chosen dimension is not compatible with the the list depth,
an error message is issued. As an illustration suppose that ar is an
array whose components are 1,2,3,4. then

ARRAY_TO_LIST ar; ==> {1,2,3,4}

LIST_TO_ARRAY({1,2,3,4},1,arr}; ==>

generates the array arr with the components 1,2,3,4.

vii. Control of the HEPHYS package.

The commands REMVECTOR and REMINDEX remove the property of being
a 4-vector or a 4-index respectively.

The function MKGAM allows to assign to any identifier the property of
a Dirac gamma matrix and, eventually, to suppress it. Its interest lies
in the fact that, during a calculation, it is often useful to transform a
gamma matrix into an abstract operator and vice-versa. Moreover, in
many applications in basic physics, it is interesting to use the identifier
g for other purposes. It takes two arguments. The first is the identifier.
The second must be chosen equal to t if one wants to transform it into a
gamma matrix. Any other binding for this second argument suppresses
the property of being a gamma matrix the identifier is supposed to
have.

8 PROPERTIES AND FLAGS 21

8 Properties and Flags

In spite of the fact that many facets of the handling of property lists is
easily accessible in algebraic mode, it is useful to provide analogous functions
genuine to the algebraic mode. The reason is that, altering property lists of
objects, may easily destroy the integrity of the system. The functions, which
are here described, do ignore the property list and flags already defined by
the system itself. They generate and track the addtional properties and flags
that the user issues using them. They offer him the possibility to work on
property lists so that he can design a programming style of the “conceptual”
type.

i. We first consider “flags”.
To a given identifier, one may associate another one linked to it “in
the background”. The three functions PUTFLAG, DISPLAYFLAG and
CLEARFLAG handle them.

PUTFLAG has 3 arguments. The first one is the identifier or a list of
identifiers, the second one is the name of the flag, and the third one is
T (true) or 0 (zero). When the third argument is T, it creates the flag,
when it is 0 it destroys it. In this last case, the function does return
nil (not seen inside the algebraic mode).

PUTFLAG(z1,flag_name,t); ==> flag_name

PUTFLAG({z1,z2},flag1_name,t); ==> t

PUTFLAG(z2,flag1_name,0) ==>

DISPLAYFLAG allows one to extract flags. The previous actions give:

DISPLAYFLAG z1; ==>{flag_name,flag1_name}

DISPLAYFLAG z2 ; ==> {}

CLEARFLAG is a command which clears all flags associated with the
identifiers id1, . . . , idn.

ii. Properties are handled by similar functions. PUTPROP has four argu-

9 CONTROL FUNCTIONS 22

ments. The second argument is, here, the indicator of the property.
The third argument may be any valid expression. The fourth one is
also T or 0.

PUTPROP(z1,property,x^2,t); ==> z1

In general, one enters

PUTPROP(LIST(idp1,idp2,..),<propname>,<value>,T);

To display a specific property, one uses DISPLAYPROP which takes two
arguments. The first is the name of the identifier, the second is the
indicator of the property.

2
DISPLAYPROP(z1,property); ==> {property,x }

Finally, CLEARPROP is a nary commmand which clears all properties of
the identifiers which appear as arguments.

9 Control Functions

Here we describe additional functions which improve user control on the
environment.

i. The first set of functions is composed of unary and binary boolean
functions. They are:

ALATOMP x; x is anything.
ALKERNP x; x is anything.
DEPVARP(x,v); x is anything.

(v is an atom or a kernel)

ALATOMP has the value T iff x is an integer or an identifier after it has
been evaluated down to the bottom.

9 CONTROL FUNCTIONS 23

ALKERNP has the value T iff x is a kernel after it has been evaluated
down to the bottom.

DEPVARP returns T iff the expression x depends on v at any level.

The above functions together with PRECP have been declared operator
functions to ease the verification of their value.

NORDP is equal to NOT ORDP.

ii. The next functions allow one to analyze and to clean the environment
of REDUCE created by the user while working interactively. Two
functions are provided:
SHOW allows the user to get the various identifiers already assigned and
to see their type. SUPPRESS selectively clears the used identifiers or
clears them all. It is to be stressed that identifiers assigned from the
input of files are ignored. Both functions have one argument and the
same options for this argument:

SHOW (SUPPRESS) all
SHOW (SUPPRESS) scalars
SHOW (SUPPRESS) lists
SHOW (SUPPRESS) saveids (for saved expressions)
SHOW (SUPPRESS) matrices
SHOW (SUPPRESS) arrays
SHOW (SUPPRESS) vectors

(contains vector, index and tvector)
SHOW (SUPPRESS) forms

The option all is the most convenient for SHOW but, with it, it may
takes some time to get the answer after one has worked several hours.
When entering REDUCE the option all for SHOW gives:

SHOW all; ==>

scalars are: NIL
arrays are: NIL
lists are: NIL
matrices are: NIL
vectors are: NIL
forms are: NIL

10 HANDLING OF POLYNOMIALS 24

It is a convenient way to remind the various options. Here is an ex-
ample which is valid when one starts from a fresh environment:

a:=b:=1$

SHOW scalars; ==> scalars are: (A B)

SUPPRESS scalars; ==> t

SHOW scalars; ==> scalars are: NIL

iii. The CLEAR function of the system does not do a complete cleaning of
OPERATORS and FUNCTIONS . The following two functions do a more

complete cleaning and, also, automatically takes into account the user
flag and properties that the functions PUTFLAG and PUTPROP may have
introduced.

Their names are CLEAROP and CLEARFUNCTIONS. CLEAROP takes one
operator as its argument.
CLEARFUNCTIONS is a nary command. If one issues

CLEARFUNCTIONS a1,a2, ... , an $

The functions with names a1,a2, ... ,an are cleared. One should
be careful when using this facility since the only functions which cannot
be erased are those which are protected with the lose flag.

10 Handling of Polynomials

The module contains some utility functions to handle standard quotients
and several new facilities to manipulate polynomials.

i. Two functions ALG TO SYMB and SYMB TO ALG allow one to change an
expression which is in the algebraic standard quotient form into a pre-
fix lisp form and vice-versa. This is done in such a way that the symbol

10 HANDLING OF POLYNOMIALS 25

list which appears in the algebraic mode disappears in the symbolic
form (there it becomes a parenthesis “()”) and it is reintroduced in
the translation from a symbolic prefix lisp expression to an algebraic
one. Here, is an example, showing how the wellknown lisp function
FLATTENS can be trivially transposed inside the algebraic mode:

algebraic procedure ecrase x;
lisp symb_to_alg flattens1 alg_to_symb algebraic x;

symbolic procedure flattens1 x;
% ll; ==> ((A B) ((C D) E))
% flattens1 ll; (A B C D E)

if atom x then list x else
if cdr x then

append(flattens1 car x, flattens1 cdr x)
else flattens1 car x;

gives, for instance,

ll:={a,{b,{c},d,e},{{{z}}}}$

ECRASE ll; ==> {A, B, C, D, E, Z}

The function MKDEPTH ONE described above implements that function-
ality.

ii. LEADTERM and REDEXPR are the algebraic equivalent of the symbolic
functions LT and RED. They give, respectively, the leading term and
the reductum of a polynomial. They also work for rational functions.
Their interest lies in the fact that they do not @@require one to extract
the main variable. They work according to the current ordering of the
system:

pol:=x++y+z$

10 HANDLING OF POLYNOMIALS 26

LEADTERM pol; ==> x

korder y,x,z;

LEADTERM pol; ==> y

REDEXPR pol; ==> x + z

By default, the representation of multivariate polynomials is recursive.
It is justified since it is the one which takes the least memory. With
such a representation, the function LEADTERM does not necessarily ex-
tract a true monom. It extracts a monom in the leading indeterminate
multiplied by a polynomial in the other indeterminates. However, very
often, one needs to handle true monoms separately. In that case, one
needs a polynomial in distributive form. Such a form is provided by
the package GROEBNER (H. Melenk et al.). The facility there is,
however, much too involved in many applications and the necessity to
load the package makes it interesting to construct an elementary fa-
cility to handle the distributive representation of polynomials. A new
switch has been created for that purpose. It is called DISTRIBUTE and
a new function DISTRIBUTE puts a polynomial in distributive form.
With that switch set to on, LEADTERM gives true monoms.

MONOM transforms a polynomial into a list of monoms. It works what-
ever the position of the switch DISTRIBUTE.

SPLITTERMS is analoguous to MONOM except that it gives a list of two
lists. The first sublist contains the positive terms while the second
sublist contains the negative terms.

SPLITPLUSMINUS gives a list whose first element is the positive part of
the polynomial and its second element is its negative part.

iii. Two complementary functions LOWESTDEG and DIVPOL are provided.
The first takes a polynomial as its first argument and the name of an
indeterminate as its second argument. It returns the lowest degree in
that indeterminate. The second function takes two polynomials and
returns both the quotient and its remainder.

11 HANDLING OF TRANSCENDENTAL FUNCTIONS 27

11 Handling of Transcendental Functions

The functions TRIGREDUCE and TRIGEXPAND and the equivalent @@ones for
hyperbolic functions HYPREDUCE and HYPEXPAND make the transformations
to multiple arguments and from @@multiple arguments to elementary argu-
ments. Here is a simple example:

aa:=sin(x+y)$

TRIGEXPAND aa; ==> SIN(X)*COS(Y) + SIN(Y)*COS(X)

TRIGREDUCE ws; ==> SIN(Y + X)

When a trigonometric or hyperbolic expression is symmetric with respect to
the interchange of SIN (SINH) and COS (COSH), the application of
TRIG(HYP)-REDUCE may often lead to great simplifications. However, if it is
highly assymetric, the repeated application of TRIG(HYP)-REDUCE followed
by the use of TRIG(HYP)-EXPAND will lead to more complicated but more
symmetric expressions:

aa:=(sin(x)^2+cos(x)^2)^3$

TRIGREDUCE aa; ==> 1

bb:=1+sin(x)^3$

TRIGREDUCE bb; ==>

- SIN(3*X) + 3*SIN(X) + 4

4

TRIGEXPAND ws; ==>

12 HANDLING OF N–DIMENSIONAL VECTORS 28

3 2
SIN(X) - 3*SIN(X)*COS(X) + 3*SIN(X) + 4

4

12 Handling of n–dimensional Vectors

Explicit vectors in EUCLIDEAN space may be represented by list-like or bag-
like objects of depth 1. The components may be bags but may not be
lists. Functions are provided to do the sum, the difference and the @@scalar
product. When the space-dimension is three there are also functions for
the cross and mixed products. SUMVECT, MINVECT, SCALVECT, CROSSVECT
have two arguments. MPVECT has three arguments. The following example
is sufficient to explain how they work:

l:={1,2,3}$

ll:=list(a,b,c)$

SUMVECT(l,ll); ==> {A + 1,B + 2,C + 3}

MINVECT(l,ll); ==> { - A + 1, - B + 2, - C + 3}

SCALVECT(l,ll); ==> A + 2*B + 3*C

CROSSVECT(l,ll); ==> { - 3*B + 2*C,3*A - C, - 2*A + B}

MPVECT(l,ll,l); ==> 0

13 HANDLING OF GRASSMANN OPERATORS 29

13 Handling of Grassmann Operators

Grassman variables are often used in physics. For them the multiplication
operation is associative, distributive but anticommutative. The KERNEL of
REDUCE does not provide it. However, implementing it in full generality
would almost certainly decrease the overall efficiency of the system. This
small module together with the declaration of antisymmetry for operators is
enough to deal with most calculations. The reason is, that a product of sim-
ilar anticommuting kernels can easily be transformed into an antisymmetric
operator with as many indices as the number of these kernels. Moreover,
one may also issue pattern matching rules to implement the anticommuta-
tivity of the product. The functions in this module represent the minimum
functionality required to identify them and to handle their specific features.

PUTGRASS is a (nary) command which give identifiers the property @@of
being the names of Grassmann kernels. REMGRASS removes this property.

GRASSP is a boolean function which detects grassmann kernels.

GRASSPARITY takes a monom as argument and gives its parity. If the
monom is a simple grassmann kernel it returns 1.

GHOSTFACTOR has two arguments. Each one is a monom. It is equal to

(-1)**(GRASSPARITY u * GRASSPARITY v)

Here is an illustration to show how the above functions work:

PUTGRASS eta; ==> t

if GRASSP eta(1) then "grassmann kernel"; ==>

grassmann kernel

aa:=eta(1)*eta(2)-eta(2)*eta(1); ==>

AA := - ETA(2)*ETA(1) + ETA(1)*ETA(2)

GRASSPARITY eta(1); ==> 1

14 HANDLING OF MATRICES 30

GRASSPARITY (eta(1)*eta(2)); ==> 0

GHOSTFACTOR(eta(1),eta(2)); ==> -1

grasskernel:=
{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
(~x)*(~x) => 0 when grassp x};

exp:=eta(1)^2$

exp where grasskernel; ==> 0

aa where grasskernel; ==> - 2*ETA(2)*ETA(1)

14 Handling of Matrices

This module provides functions for handling matrices more comfortably.

i. Often, one needs to construct some UNIT matrix of a given dimension.
This construction is done by the system thanks @@to the function
UNITMAT. It is a nary function. The command is

UNITMAT M1(n1), M2(n2),Mi(ni) ;

where M1,...Mi are names of matrices and n1, n2, ..., ni are
integers .

@@MKIDM is a generalization of MKID. It allows one to connect two or
several matrices. If u and u1 are two matrices, one can go from one to
the other:

matrix u(2,2);$ unitmat u1(2)$

u1; ==>

[1 0]

14 HANDLING OF MATRICES 31

[]
[0 1]

mkidm(u,1); ==>

[1 0]
[]
[0 1]

@@This function allows one to make loops on matrices like in the
following illustration. If U, U1, U2,.., U5 are matrices:

FOR I:=1:5 DO U:=U-MKIDM(U,I);

can be issued.

ii. The next functions map matrices on bag-like or list-like objects and
conversely they generate matrices from bags or lists.

COERCEMAT transforms the matrix U into a list of lists. The entry is

COERCEMAT(U,id)

where id is equal to list othewise it transforms it into a bag of bags
whose envelope is equal to id.

BAGLMAT does the opposite job. The first argument is the bag-like or
list-like object while the second argument is the matrix identifier. The
entry is

BAGLMAT(bgl,U)

bgl becomes the matrix U . The transformation is not done if U is
already the name of a previously defined matrix. This is to avoid
ACCIDENTAL redefinition of that matrix.

ii. The functions SUBMAT, MATEXTR, MATEXTC take parts of a given ma-
trix.

14 HANDLING OF MATRICES 32

SUBMAT has three arguments. The entry is

SUBMAT(U,nr,nc)

The first is the matrix name, and the other two are the row and column
@@numbers. It gives the @@submatrix obtained from U by deleting
the row nr and the column nc. When one of them is equal to zero
only column nc or row nr is deleted.

MATEXTR and MATEXTC extract a row or a column and place it into a
list-like or bag-like object. @@The entries are

MATEXTR(U,VN,nr)

MATEXTC(U,VN,nc)

where U is the matrix, VN is the “vector name”, nr and nc are integers.
If VN is equal to list the vector is given as a list otherwise it is given
as a bag.

iii. Functions which manipulate matrices. They are MATSUBR, MATSUBC,
HCONCMAT, VCONCMAT, TPMAT, HERMAT

MATSUBR MATSUBC substitute rows and columns. They have three ar-
guments. Entries are:

MATSUBR(U,bgl,nr)

MATSUBC(U,bgl,nc)

The meaning of the variables U, nr, nc is the same as above while
bgl is a list-like or bag-like vector. Its length should be compatible
with the dimensions of the matrix.

HCONCMAT VCONCMAT concatenate two matrices. The entries are

HCONCMAT(U,V)

VCONCMAT(U,V)

14 HANDLING OF MATRICES 33

The first function concatenates horizontally, the second one concate-
nates vertically. The dimensions must match.

TPMAT makes the tensor product of two matrices. It is also an infix
function. The entry is

TPMAT(U,V) or U TPMAT V

HERMAT takes the hermitian conjuguate of a matrix The entry is

HERMAT(U,HU)

where HU is the identifier for the hermitian matrix of U. @@It should
be unassigned for this function to work successfully. This is done on
purpose to prevent accidental redefinition of an already used identifier
.

iv. SETELTMAT GETELTMAT are functions of two integers. The first one
@@resets the element (i,j) while the second one extracts an element
identified by (i,j). They may be useful when dealing with matrices
inside procedures.

