
A Vector Algebra and Calculus Package for

REDUCE

David Harper
Astronomy Unit

Queen Mary and Westfield College
University of London

Mile End Road
London E1 4NS

England

Electronic mail: adh@star.qmw.ac.uk

1 Introduction

This package 1 is written in RLISP (the LISP meta-language) and is intended
for use with REDUCE 3.4. It provides REDUCE with the ability to perform
vector algebra using the same notation as scalar algebra. The basic algebraic
operations are supported, as are differentiation and integration of vectors
with respect to scalar variables, cross product and dot product, component
manipulation and application of scalar functions (e.g. cosine) to a vector to
yield a vector result.

A set of vector calculus operators are provided for use with any orthogonal
curvilinear coordinate system. These operators are gradient, divergence,
curl and del-squared (Laplacian). The Laplacian operator can take scalar
or vector arguments.

Several important coordinate systems are pre-defined and can be invoked
by name. It is also possible to create new coordinate systems by specifying
the names of the coordinates and the values of the scale factors.

1Reference: Computer Physics Communications, 54, 295-305 (1989)

1

2 VECTOR DECLARATION AND INITIALISATION 2

2 Vector declaration and initialisation

Any name may be declared to be a vector, provided that it has not previously
been declared as a matrix or an array. To declare a list of names to be vectors
use the VEC command:

VEC A,B,C;

declares the variables A, B and C to be vectors. If they have already been
assigned (scalar) values, these will be lost.

When a vector is declared using the VEC command, it does not have an
initial value.

If a vector value is assigned to a scalar variable, then that variable will
automatically be declared as a vector and the user will be notified that this
has happened.

A vector may be initialised using the AVEC function which takes three scalar
arguments and returns a vector made up from those scalars. For example

A := AVEC(A1, A2, A3);

sets the components of the vector A to A1, A2 and A3.

3 Vector algebra

(In the examples which follow, V, V1, V2 etc are assumed to be vectors while
S, S1, S2 etc are scalars.)

The scalar algebra operators +,-,* and / may be used with vector operands
according to the rules of vector algebra. Thus multiplication and division of
a vector by a scalar are both allowed, but it is an error to multiply or divide
one vector by another.

V := V1 + V2 - V3; Addition and subtraction
V := S1*3*V1; Scalar multiplication
V := V1/S; Scalar division
V := -V1; Negation

Vector multiplication is carried out using the infix operators DOT and CROSS.
These are defined to have higher precedence than scalar multiplication and
division.

3 VECTOR ALGEBRA 3

V := V1 CROSS V2; Cross product
S := V1 DOT V2; Dot product
V := V1 CROSS V2 + V3;
V := (V1 CROSS V2) + V3;

The last two expressions are equivalent due to the precedence of the CROSS
operator.

The modulus of a vector may be calculated using the VMOD operator.

S := VMOD V;

A unit vector may be generated from any vector using the VMOD operator.

V1 := V/(VMOD V);

Components may be extracted from any vector using index notation in the
same way as an array.

V := AVEC(AX, AY, AZ);
V(0); yields AX
V(1); yields AY
V(2); yields AZ

It is also possible to set values of individual components. Following from
above:

V(1) := B;

The vector V now has components AX, B, AZ.

Vectors may be used as arguments in the differentiation and integration
routines in place of the dependent expression.

V := AVEC(X**2, SIN(X), Y);
DF(V,X); yields (2*X, COS(X), 0)
INT(V,X); yields (X**3/3, -COS(X), Y*X)

Vectors may be given as arguments to monomial functions such as SIN, LOG
and TAN. The result is a vector obtained by applying the function component-
wise to the argument vector.

V := AVEC(A1, A2, A3);
SIN(V); yields (SIN(A1), SIN(A2), SIN(A3))

4 VECTOR CALCULUS 4

4 Vector calculus

The vector calculus operators div, grad and curl are recognised. The Lapla-
cian operator is also available and may be applied to scalar and vector
arguments.

V := GRAD S; Gradient of a scalar field
S := DIV V; Divergence of a vector field
V := CURL V1; Curl of a vector field
S := DELSQ S1; Laplacian of a scalar field
V := DELSQ V1; Laplacian of a vector field

These operators may be used in any orthogonal curvilinear coordinate sys-
tem. The user may alter the names of the coordinates and the values of the
scale factors. Initially the coordinates are X, Y and Z and the scale factors
are all unity.

There are two special vectors : COORDS contains the names of the coordinates
in the current system and HFACTORS contains the values of the scale factors.

The coordinate names may be changed using the COORDINATES operator.

COORDINATES R,THETA,PHI;

This command changes the coordinate names to R, THETA and PHI.

The scale factors may be altered using the SCALEFACTORS operator.

SCALEFACTORS(1,R,R*SIN(THETA));

This command changes the scale factors to 1, R and R SIN(THETA).

Note that the arguments of SCALEFACTORS must be enclosed in parentheses.
This is not necessary with COORDINATES.

When vector differential operators are applied to an expression, the current
set of coordinates are used as the independent variables and the scale factors
are employed in the calculation. (See, for example, Batchelor G.K. ’An
Introduction to Fluid Mechanics’, Appendix 2.)

Several coordinate systems are pre-defined and may be invoked by name.
To see a list of valid names enter

SYMBOLIC !*CSYSTEMS;

and REDUCE will respond with something like

4 VECTOR CALCULUS 5

(CARTESIAN SPHERICAL CYLINDRICAL)

To choose a coordinate system by name, use the command GETCSYSTEM.

To choose the Cartesian coordinate system :

GETCSYSTEM ’CARTESIAN;

Note the quote which prefixes the name of the coordinate system. This is re-
quired because GETCSYSTEM (and its complement PUTCSYSTEM) is a SYMBOLIC
procedure which requires a literal argument.

REDUCE responds by typing a list of the coordinate names in that coordi-
nate system. The example above would produce the response

(X Y Z)

whilst

GETCSYSTEM ’SPHERICAL;

would produce

(R THETA PHI)

Note that any attempt to invoke a coordinate system is subject to the same
restrictions as the implied calls to COORDINATES and SCALEFACTORS. In par-
ticular, GETCSYSTEM fails if any of the coordinate names has been assigned
a value and the previous coordinate system remains in effect.

A user-defined coordinate system can be assigned a name using the command
PUTCSYSTEM. It may then be re-invoked at a later stage using GETCSYSTEM.

Example 1

We define a general coordinate system with coordinate names X,Y,Z and scale
factors H1,H2,H3 :

COORDINATES X,Y,Z;
SCALEFACTORS(H1,H2,H3);
PUTCSYSTEM ’GENERAL;

This system may later be invoked by entering

GETCSYSTEM ’GENERAL;

5 VOLUME AND LINE INTEGRATION 6

5 Volume and Line Integration

Several functions are provided to perform volume and line integrals. These
operate in any orthogonal curvilinear coordinate system and make use of
the scale factors described in the previous section.

Definite integrals of scalar and vector expressions may be calculated using
the DEFINT function.

Example 2

To calculate the definite integral of sin(x)2 between 0 and 2π we enter

DEFINT(SIN(X)**2,X,0,2*PI);

This function is a simple extension of the INT function taking two extra
arguments, the lower and upper bounds of integration respectively.

Definite volume integrals may be calculated using the VOLINTEGRAL function
whose syntax is as follows :

VOLINTEGRAL(integrand, vector lower-bound, vector upper-bound);

Example 3

In spherical polar coordinates we may calculate the volume of a sphere by
integrating unity over the range r=0 to RR, θ=0 to PI, φ=0 to 2*π as follows
:
VLB := AVEC(0,0,0); Lower bound
VUB := AVEC(RR,PI,2*PI); Upper bound in r, θ, φ respectively
VOLINTORDER := (0,1,2); The order of integration
VOLINTEGRAL(1,VLB,VUB);

Note the use of the special vector VOLINTORDER which controls the order
in which the integrations are carried out. This vector should be set to
contain the number 0, 1 and 2 in the required order. The first component of
VOLINTORDER contains the index of the first integration variable, the second
component is the index of the second integration variable and the third
component is the index of the third integration variable.

Example 4

Suppose we wish to calculate the volume of a right circular cone. This is
equivalent to integrating unity over a conical region with the bounds:

5 VOLUME AND LINE INTEGRATION 7

z = 0 to H (H = the height of the cone)
r = 0 to pZ (p = ratio of base diameter to height)
phi = 0 to 2*PI

We evaluate the volume by integrating a series of infinitesimally thin circular
disks of constant z-value. The integration is thus performed in the order :
d(φ) from 0 to 2π, dr from 0 to p*Z, dz from 0 to H. The order of the indices
is thus 2, 0, 1.

VOLINTORDER := AVEC(2,0,1);
VLB := AVEC(0,0,0);
VUB := AVEC(P*Z,H,2*PI);
VOLINTEGRAL(1,VLB,VUB);

(At this stage, we replace P*H by RR, the base radius of the cone, to obtain
the result in its more familiar form.)

Line integrals may be calculated using the LINEINT and DEFLINEINT func-
tions. Their general syntax is

LINEINT(vector-function, vector-curve, variable);

DEFLINENINT(vector-function, vector-curve, variable, lower-bound,
upper-bound);

where

vector-function is any vector-valued expression;

vector-curve is a vector expression which describes the path of integration
in terms of the independent variable;

variable is the independent variable;

lower-bound

upper-bound are the bounds of integration in terms of the independent
variable.

Example 5

In spherical polar coordinates, we may integrate round a line of constant
theta (‘latitude’) to find the length of such a line. The vector function is
thus the tangent to the ‘line of latitude’, (0,0,1) and the path is (0,LAT,PHI)
where PHI is the independent variable. We show how to obtain the definite
integral i.e. from φ = 0 to 2π :

DEFLINEINT(AVEC(0,0,1),AVEC(0,LAT,PHI),PHI,0,2*PI);

6 DEFINING NEW FUNCTIONS AND PROCEDURES 8

6 Defining new functions and procedures

Most of the procedures in this package are defined in symbolic mode and are
invoked by the REDUCE expression-evaluator when a vector expression is
encountered. It is not generally possible to define procedures which accept
or return vector values in algebraic mode. This is a consequence of the
way in which the REDUCE interpreter operates and it affects other non-
scalar data types as well : arrays cannot be passed as algebraic procedure
arguments, for example.

7 Acknowledgements

This package was written whilst the author was the U.K. Computer Algebra
Support Officer at the University of Liverpool Computer Laboratory.

