
BOOLEAN: Computing with boolean expressions

H. Melenk

Konrad–Zuse–Zentrum für Informationstechnik Berlin
Takustras̈e 7

D–14195 Berlin – Dahlem
Federal Republic of Germany

E–mail: melenk@zib.de

1 Introduction

The package Boolean supports the computation with boolean expressions
in the propositional calculus. The data objects are composed from algebraic
expressions (“atomic parts”, “leafs”) connected by the infix boolean opera-
tors and, or, implies, equiv, and the unary prefix operator not. Boolean
allows you to simplify expressions built from these operators, and to test
properties like equivalence, subset property etc. Also the reduction of a
boolean expression by a partial evaluation and combination of its atomic
parts is supported.

2 Entering boolean expressions

In order to distinguish boolean data expressions from boolean expressions
in the REDUCEprogramming language (e.g. in an if statement), each ex-
pression must be tagged explicitly by an operator boolean. Otherwise the
boolean operators are not accepted in the REDUCEalgebraic mode input.
The first argument of boolean can be any boolean expression, which may
contain references to other boolean values.

boolean (a and b or c);
q := boolean(a and b implies c);

1



3 NORMAL FORMS 2

boolean(q or not c);

Brackets are used to override the operator precedence as usual. The leafs
or atoms of a boolean expression are those parts which do not contain a
leading boolean operator. These are considered as constants during the
boolean evaluation. There are two pre-defined values:

• true, t or 1

• false, nil or 0

These represent the boolean constants. In a result form they are used only
as 1 and 0.

By default, a boolean expression is converted to a disjunctive normal form,
that is a form where terms are connected by or on the top level and each
term is set of leaf expressions, eventually preceded by not and connected
by and. An operators or or and is omitted if it would have only one
single operand. The result of the transformation is again an expression
with leading operator boolean such that the boolean expressions remain
separated from other algebraic data. Only the boolean constants 0 and 1
are returned untagged.

On output, the operators and and or are represented as /\ and \/, respec-
tively.

boolean(true and false); -> 0
boolean(a or not(b and c)); -> boolean(not(b) \/ not(c) \/ a)
boolean(a equiv not c); -> boolean(not(a)/\c \/ a/\not(c))

3 Normal forms

The disjunctive normal form is used by default. It represents the “natural”
view and allows us to represent any form free or parentheses. Alternatively
a conjunctive normal form can be selected as simplification target, which
is a form with leading operator and. To produce that form add the keyword
and as an additional argument to a call of boolean.

boolean (a or b implies c);
->

boolean(not(a)/\not(b) \/ c)



4 EVALUATION OF A BOOLEAN EXPRESSION 3

boolean (a or b implies c, and);
->

boolean((not(a) \/ c)/\(not(b) \/ c))

Usually the result is a fully reduced disjunctive or conjuntive normal form,
where all redundant elements have been eliminated following the rules

a ∧ b ∨ ¬a ∧ b ←→ b

a ∨ b ∧ ¬a ∨ b ←→ b

Internally the full normal forms are computed as intermediate result; in
these forms each term contains all leaf expressions, each one exactly once.
This unreduced form is returned when you set the additional keyword full:

boolean (a or b implies c, full);
->

boolean(a/\b/\c \/ a/\not(b)/\c \/ not(a)/\b/\c \/ not(a)/\not(b)/\c

\/ not(a)/\not(b)/\not(c))

The keywords full and and may be combined.

4 Evaluation of a boolean expression

If the leafs of the boolean expression are algebraic expressions which may
evaluate to logical values because the environment has changed (e.g. vari-
ables have been bound), you can re–investigate the expression using the
operator testbool with the boolean expression as argument. This operator
tries to evaluate all leaf expressions in REDUCEboolean style. As many
terms as possible are replaced by their boolean values; the others remain
unchanged. The resulting expression is contracted to a minimal form. The
result 1 (= true) or 0 (=false) signals that the complete expression could
be evaluated.

In the following example the leafs are built as numeric greater test. For
using > in the expressions the greater sign must be declared operator first.
The error messages are meaningless.

operator >;
fm:=boolean(x>v or not (u>v));

->



4 EVALUATION OF A BOOLEAN EXPRESSION 4

fm := boolean(not(u>v) \/ x>v)

v:=10$

testbool fm;

***** u - 10 invalid as number
***** x - 10 invalid as number

->
boolean(not(u>10) \/ x>10)

x:=3$
testbool fm;

***** u - 10 invalid as number

->
boolean(not(u>10))

x:=17$

testbool fm;

***** u - 10 invalid as number

->
1


