
A Definite Integration Interface for REDUCE

Kerry Gaskell
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin – Dahlem

Federal Republic of Germany

E–mail: neun@zib.de∗

July 1994

1 Introduction

This documentation describes part of REDUCE’s definite integration pack-
age that is able to calculate the definite integrals of many functions, includ-
ing several special functions. There are other parts of this package, such
as Stan Kameny’s code for contour integration, that are not included here.
The integration process described here is not the more normal approach of
initially calculating the indefinite integral, but is instead the rather unusual
idea of representing each function as a Meijer G-function (a formal defini-
tion of the Meijer G-function can be found in [1]), and then calculating the
integral by using the following Meijer G integration formula.

∫ ∞

0
xα−1Gst

uv

(
σx

∣∣∣∣∣
(cu)
(dv)

)
Gmn

pq

(
ωxl/k

∣∣∣∣∣
(ap)
(bq)

)
dx = kGij

kl

(
ξ

∣∣∣∣∣
(gk)
(hl)

)
(1)

The resulting Meijer G-function is then retransformed, either directly or
via a hypergeometric function simplification, to give the answer. A more
detailed account of this theory can be found in [2].

1This definite integration interface was written during my one year placement at
ZIB. Any comments and/or problems should therefore be directed to Winfried Neun at
neun@zib.de.

1

2 INTEGRATION BETWEEN ZERO AND INFINITY 2

2 Integration between zero and infinity

As an example, if one wishes to calculate the following integral

∫ ∞

0
x−1e−xsin(x) dx

then initially the correct Meijer G-functions are found, via a pattern match-
ing process, and are substituted into (1) to give

√
π

∫ ∞

0
x−1G10

01

(
x

∣∣∣∣∣
.

0

)
G10

02

(
x2

4

∣∣∣∣∣
. .
1
2 0

)
dx

The cases for validity of the integral are then checked. If these are found to
be satisfactory then the formula is calculated and we obtain the following
Meijer G-function

G12
22

(
1

∣∣∣∣∣
1
2 1
1
2 0

)

This is reduced to the following hypergeometric function

2F1(1
2 , 1; 3

2 ;−1)

which is then calculated to give the correct answer of

π

4

The above formula (1) is also true for the integration of a single Meijer
G-function by replacing the second Meijer G-function with a trivial Meijer
G-function.

A list of numerous particular Meijer G-functions is available in [1].

3 Integration over other ranges

Although the description so far has been limited to the computation of
definite integrals between 0 and infinity, it can also be extended to calculate

3 INTEGRATION OVER OTHER RANGES 3

integrals between 0 and some specific upper bound, and by further extension,
integrals between any two bounds. One approach is to use the Heaviside
function, i.e.

∫ ∞

0
x2e−xH(1− x) dx =

∫ 1

0
x2e−xdx

Another approach, again not involving the normal indefinite integration pro-
cess, again uses Meijer G-functions, this time by means of the following
formula

∫ y

0
xα−1Gmn

pq

(
σx

∣∣∣∣∣
(au)
(bv)

)
dx = yα Gm n+1

p+1 q+1

(
σy

∣∣∣∣∣
(a1..an, 1− α, an+1..ap)
(b1..bm,−α, bm+1..bq)

)
(2)

For a more detailed look at the theory behind this see [2].

For example, if one wishes to calculate the following integral

∫ y

0
sin(2

√
x) dx

then initially the correct Meijer G-function is found, by a pattern matching
process, and is substituted into (2) to give

∫ y

0
G10

02

(
x

∣∣∣∣∣
. .
1
2 0

)
dx

which then in turn gives

y G11
13

(
y

∣∣∣∣∣
0

1
2 −1 0

)
dx

and returns the result

√
π J3/2(2

√
y) y

y1/4

4 USING THE DEFINITE INTEGRATION PACKAGE 4

4 Using the definite integration package

To use this package, you must first load it by the command

load_package defint;

Definite integration is then possible using the int command with the syntax:

INT(EXPRN:algebraic,VAR:kernel,LOW:algebraic,UP:algebraic)
:algebraic.

where LOW and UP are the lower and upper bounds respectively for the
definite integration of EXPRN with respect to VAR.

4.1 Examples

∫ ∞

0
e−xdx

int(e^(-x),x,0,infinity);

1

∫ ∞

0
xsin(1/x) dx

int(x*sin(1/x),x,0,infinity);

1
INT(X*SIN(---),X,0,INFINITY)

X

∫ ∞

0
x2cos(x) e−2xdx

int(x^2*cos(x)*e^(-2*x),x,0,infinity);

4

125

∫ ∞

0
xe−1/2xH(1− x) dx =

∫ 1

0
xe−1/2xdx

5 INTEGRAL TRANSFORMS 5

int(x*e^(-1/2x)*Heaviside(1-x),x,0,infinity);

2*(2*SQRT(E) - 3)

SQRT(E)

∫ 1

0
x log(1 + x) dx

int(x*log(1+x),x,0,1);

1

4

∫ y

0
cos(2x) dx

int(cos(2x),x,y,2y);

SIN(4*Y) - SIN(2*Y)

2

5 Integral Transforms

A useful application of the definite integration package is in the calculation
of various integral transforms. The transforms available are as follows:

• Laplace transform

• Hankel transform

• Y-transform

• K-transform

• StruveH transform

• Fourier sine transform

• Fourier cosine transform

5 INTEGRAL TRANSFORMS 6

5.1 Laplace transform

The Laplace transform

f(s) = L {F(t)} =
∫∞
0 e−stF (t) dt

can be calculated by using the laplace_transform command.

This requires as parameters

• the function to be integrated

• the integration variable.

For example

L {e−at}
is entered as

laplace_transform(e^(-a*x),x);

and returns the result

1
s + a

5.2 Hankel transform

The Hankel transform

f(ω) =
∫ ∞

0
F (t) Jν(2

√
ωt) dt

can be calculated by using the hankel_transform command e.g.

hankel_transform(f(x),x);

This is used in the same way as the laplace_transform command.

5.3 Y-transform

The Y-transform

f(ω) =
∫ ∞

0
F (t) Yν(2

√
ωt) dt

5 INTEGRAL TRANSFORMS 7

can be calculated by using the Y_transform command e.g.

Y_transform(f(x),x);

This is used in the same way as the laplace_transform command.

5.4 K-transform

The K-transform

f(ω) =
∫ ∞

0
F (t)Kν(2

√
ωt) dt

can be calculated by using the K_transform command e.g.

K_transform(f(x),x);

This is used in the same way as the laplace_transform command.

5.5 StruveH transform

The StruveH transform

f(ω) =
∫ ∞

0
F (t)StruveH(ν, 2

√
ωt) dt

can be calculated by using the struveh_transform command e.g.

struveh_transform(f(x),x);

This is used in the same way as the laplace_transform command.

5.6 Fourier sine transform

The Fourier sine transform

f(s) =
∫ ∞

0
F (t) sin(st) dt

can be calculated by using the fourier_sin command e.g.

fourier_sin(f(x),x);

This is used in the same way as the laplace_transform command.

6 ADDITIONAL MEIJER G-FUNCTION DEFINITIONS 8

5.7 Fourier cosine transform

The Fourier cosine transform

f(s) =
∫ ∞

0
F (t) cos(st) dt

can be calculated by using the fourier_cos command e.g.

fourier_cos(f(x),x);

This is used in the same way as the laplace_transform command.

6 Additional Meijer G-function Definitions

The relevant Meijer G representation for any function is found by a pattern-
matching process which is carried out on a list of Meijer G-function defi-
nitions. This list, although extensive, can never hope to be complete and
therefore the user may wish to add more definitions. Definitions can be
added by adding the following lines:

defint_choose(f(~x),~var => f1(n,x);

symbolic putv(mellin!-transforms!*,n,’
(() (m n p q) (ai) (bj) (C) (var)));

where f(x) is the new function, i = 1..p, j=1..q, C = a constant, var =
variable, n = an indexing number.

For example when considering cos(x) we have

Meijer G representation -

√
π G10

02

(
x2

4

∣∣∣∣∣
. .

0 1
2

)
dx

Internal definite integration package representation -

defint_choose(cos(~x),~var) => f1(3,x);

where 3 is the indexing number corresponding to the 3 in the following
formula

7 THE PRINT CONDITIONS FUNCTION 9

symbolic putv(mellin!-transforms!*,3,’
(() (1 0 0 2) () (nil (quotient 1 2))
(sqrt pi) (quotient (expt x 2) 4)));

or the more interesting example of Jn(x):

Meijer G representation -

G10
02

(
x2

4

∣∣∣∣∣
. .

n
2
−n
2

)
dx

Internal definite integration package representation -

defint_choose(besselj(~n,~x),~var) => f1(50,x,n);

symbolic putv(mellin!-transforms!*,50,’
((n) (1 0 0 2) () ((quotient n 2)

(minus quotient n 2)) 1
(quotient (expt x 2) 4)));

7 The print conditions function

The required conditions for the validity of the transform integrals can be
viewed using the following command:

print_conditions().

For example after calculating the following laplace transform

laplace_transform(x^k,x);

using the print_conditions command would produce

repart(sum(ai) - sum(bj)) + 1/2 (q + 1 - p)>(q - p) repart(s)

and (- min(repart(bj))<repart(s))<1 - max(repart(ai))

or mod(arg(eta))=pi*delta

or (- min(repart(bj))<repart(s))<1 - max(repart(ai))

8 ACKNOWLEDGEMENTS 10

or mod(arg(eta))<pi*delta

where
delta = s + t− u−v

2
eta = 1− α(v − u)− µ− ρ

µ =
∑q

j=1 bj −
∑p

i=1 ai + p−q
2 + 1

ρ =
∑v

j=1 dj −∑u
i=1 ci + u−v

2 + 1
s, t, u, v, p, q, α as in (1)

8 Acknowledgements

I would like to thank Victor Adamchik whose implementation of the definite
integration package for REDUCEis vital to this interface.

References

[1] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series,
Volume 3: More Special Functions Gordon and Breach Science Publishers
(1990)

[2] V.S. Adamchik and O.I. Marichev, The Algorithm for Calculating Inte-
grals of Hypergeometric Type Functions and its Realization in Reduce Sys-
tem from ISSAC 90:Symbolic and Algebraic Computation Addison-Wesley
Publishing Company (1990)

[3] Yudell L. Luke, The Special Functions and their Approximations, Volume
1 Academic Press (1969).

