The LIE Package

Carsten and Franziska Schobel
The Leipzig University, Computer Science Dept.
Augustusplatz 10/11, O-7010 Leipzig, Germany
Email: cschoeb@aix550.informatik.uni-leipzig.de

22 January 1993

LIE is a package of functions for the classification of real n-dimensional Lie
algebras. It consists of two modules: liendmcl and lie1234.

liendmcl

With the help of the functions in this module real n-dimensional Lie alge-
bras L with a derived algebra L(!) of dimension 1 can be classified. L has
to be defined by its structure constants cfj in the basis {X1,...,X,} with
(X, X;] = cijk. The user must define an ARRAY LIENSTRUCIN(n,n,n)
with n being the dimension of the Lie algebra L. The structure constants
LIENSTRUCIN(i,j,k)::cfj for i < j should be given. Then the procedure
LIENDIMCOMI1 can be called. Its syntax is:

LIENDIMCOM1 (<number>) .

<number> corresponds to the dimension n. The procedure simplifies the struc-
ture of L performing real linear transformations. The returned value is a list of
the form

(i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
(ii) {HEISENBERG (k) ,COMMUTATIVE(n-k)}

with 3 < k < n, k odd.
The concepts correspond to the following theorem (LIE_ALGEBRA(2) — Lo,
HEISENBERG(k) — Hj and COMMUTATIVE(n-k) — C,_g):

Theorem. Every real n-dimensional Lie algebra L with a 1-dimensional de-
rived algebra can be decomposed into one of the following forms:

() C(L)NLM = {0} : Lo®C,_y or

(i) o(L)NL® =LW . Hy o Cpp (k=2r—1,r>2), with



L C(L)=C;@(LWNCO(L)) and dimC; =3 ,
2. Ly is generated by Y7,Ys with [Y1,Ys] =Y7
3. Hj is generated by {Y7,...,Y,} with

[Yo,Y3] = - = [Yp1,Yi] = V1.
(cf. [?])
The returned list is also stored as LIE_LIST. The matrix LIENTRANS gives
the transformation from the given basis {Xi,..., X, } into the standard basis

{Y1,...,Yn}: Y; = (LIENTRANS)* X;..
A more detailed output can be obtained by turning on the switch TR_LIE:

ON TR_LIE;

before the procedure LIENDIMCOM1 is called.

The returned list could be an input for a data bank in which mathematical
relevant properties of the obtained Lie algebras are stored.

lie1234

This part of the package classifies real low-dimensional Lie algebras L of the

dimension n :=dim L = 1,2, 3,4. L is also given by its structure constants cfj in
the basis {X1,..., Xy} with [X;, Xj] = ¢};X;. An ARRAY LIESTRIN(n,n, n)
has to be defined and LIESTRIN(4, j, k:)::cfj for i < j should be given. Then
the procedure LIECLASS can be performed whose syntax is:

LIECLASS (<number>) .

<number> should be the dimension of the Lie algebra L. The procedure stepwise
simplifies the commutator relations of L using properties of invariance like the
dimension of the centre, of the derived algebra, unimodularity etc. The returned
value has the form:

{LIEALG(n),COMTAB(m)},

where m corresponds to the number of the standard form (basis: {Y1,...,Y,})
in an enumeration scheme. The corresponding enumeration schemes are listed
below (cf. [?],[?]). In case that the standard form in the enumeration scheme
depends on one (or two) parameter(s) p; (and p2) the list is expanded to:

{LIEALG(n),COMTAB(m),pl,p2}.

This returned value is also stored as LIE_.CLASS. The linear transformation
from the basis {X7,..., X} into the basis of the standard form {Y3,...,Y,} is
given by the matrix LIEMAT: Y; = (LIEMAT)?Xk.



By turning on the switch TR_LIE:
ON TR_LIE;

before the procedure LIECLASS is called the output contains not only the list
LIE_CLASS but also the non-vanishing commutator relations in the standard
form.

By the value m and the parameters further examinations of the Lie algebra are
possible, especially if in a data bank mathematical relevant properties of the
enumerated standard forms are stored.

Enumeration schemes for lie1234

returned list LIE_CLASS the corresponding commutator relations
LIEALG(1),COMTAB(0) | commutative case
LIEALG(2),COMTAB(0) | commutative case
LIEALG(2),COMTAB(1) | [1,Y3] = Vs
LIEALG(3),COMTAB(0) | commutative case
LIEALG(3),COMTAB(1) | [Y1,Ys] = Y3
LIEALG(3),COMTAB(2) | [Y1,Y3] = Y3
LIEALG(3),COMTAB(3) | [11,Y3] = V4, [Ya, V3] = Ya
LIEALG(3),COMTAB(4) | [Y1,V3] = Ya, [Ya, V3] = V3
LIEALG(3),COMTAB(5) | [Y1,Y3] = —Va, [V, V3] = V3
LIEALG(3),COMTAB(6) | [Y1,Y3] = —Yi + p1Ya, [Ya, Y] = Y3, p1 # 0
LIEALG(3),COMTAB(7) | [Y1,Ya] = Y3, [V1, V3] = Yo, [Ya, Y3 = V3
LIEALG(3),COMTAB(S) | [Y1,Ys] = Y3, [Y1,Y3] = Ya, [V, V3] = 13
LIEALG(4),COMTAB(0) | commutative case
LIEALG(4),COMTAB(1) | V1,V =V
LIEALG(4),COMTAB(2) | [Y2,Yi] =V
LIEALG(4),COMTAB(3) | [Y1,Y3] = V3, [Ya, Ya] = Vs
LIEALG(4),COMTAB(4) | [Yi, V3] = —Ya, [Ya, Va] = Ya,

V1,Ya] = [Y2,Y3] =11
LIEALG(4),COMTAB(5) | [Ya, Y] = Yo, [V1, Ya] = [V, V3] = 13
LIEALG(4),COMTAB(6) | [Ya,Va] = V3, [Y3, V4] = Yo
LIEALG(4),COMTAB(7) | [Ya, V4] = Y, [V, Va] = Y3
LIEALG(4),COMTAB(8) | [Y1,Y4] = —Ya, [Va,Vi] = V3
LIEALG(4),COMTAB(9) | [Y1,Y4] = —Y1 +p1Ya, [Yo,Ys] = Y1,p1 #0
LIEALG(4),COMTAB(10) | [Y1,Ys] = V1, [Ya, Yi] = Ya
LIEALG(4),COMTAB(11) | [V1,Y4] = Yz, [Y2, Y] = Y3




returned list LIE_CLASS

the corresponding commutator relations

LIEALG(4),COMTAB(12)
LIEALG(4),COMTAB(13)
LIEALG(4),COMTAB(14)
LIEALG(4),COMTAB(15)

LIEALG(4),COMTAB(16)
LIEALG(4),COMTAB(17)

LIEALG (4),COMTAB(18)

LIEALG (4),COMTAB(19

LIEALG(4),COMTAB(20

LIEALG(4),COMTAB(21
(4), (

)
)
)
LIEALG (4),COMTAB(22)

References

Y1,Yy] = Y1 + Yo, [Yo,Yy] = Yo + Y3,

[Y3,Yy] = Y3

[Y1,Yy] = Y1, [Yo,Yy] = p1Ya, [V3, Yy] = paYi,
p1,p2 # 0

Y1,Y4] = p1 Y1 + Yo, [Yo,Yy] = =Y1 + p1 Yo,

[Y3,Y4] = pa¥a,p2 # 0

[Y1,Y4] = p1 Y1 + Yo, [Yo, Ya] = ;1 Yo,
[V, Ya] = Ys,p1 #0

[Y1,Yy] = 2Y1, [V, Y] = Y7,

[Y2,Yy] = (1 + p1)Yo, [Y3,Ys] = (1 — p1)Ys,

p1 >0
[Y1,Yy] = 2Y1,[Ya,Y3] = Y1,
[Yo,Yy] =Yy — 1 Y3, [V3,Ya] = p1 Yo + V3,

[Y1,Yy] = 2Y1,[Ya,Y3] = Y7,

[Yo,Yy] = Yo + V3, [¥3,Yy] = Y3

[Y2,Y3] = Y1, [Y2,Ys] = V3, [Y3, V4] = Y5
[Ya,Y3] = Y1, [Yo,Yy] = —Y3,[¥3,Y4] = Y>
[Y1,Y2] = Y3, [Y1,Y3] = Y5, [V2,Y3] = Y1
[Y1,Y5] = V3, [Y1,Y3] = Yo, [Y2, V3] = V)



