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Abstract

This package provides the operators r/i_solve that compute re-
spectively the exact rational or integer zeros of a single univariate
polynomial using fast modular methods.

1 Introduction

This package provides operators that compute the exact rational zeros of
a single univariate polynomial using fast modular methods. The algorithm
used is that described by R. Loos (1983): Computing rational zeros of in-
tegral polynomials by p-adic expansion, SIAM J. Computing, 12, 286–293.
The operator r_solve computes all rational zeros whereas the operator
i_solve computes only integer zeros in a way that is slightly more efficient
than extracting them from the rational zeros. The r_solve and i_solve
interfaces are almost identical, and are intended to be completely compati-
ble with that of the general solve operator, although r_solve and i_solve
give more convenient output when only rational or integer zeros respectively
are required. The current implementation appears to be faster than solve
by a factor that depends on the example, but is typically up to about 2.

I plan to extend this package to compute Gaussian integer and rational
zeros and zeros of polynomial systems.
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2 The user interface

The first argument is required and must simplify to either a univariate poly-
nomial expression or equation with integer, rational or rounded coefficients.
Symbolic coefficients are not allowed (and currently complex coefficients are
not allowed either.) The argument is simplified to a quotient of integer
polynomials and the denominator is silently ignored.

Subsequent arguments are optional. If the polynomial variable is to be
specified then it must be the first optional argument, and if the first op-
tional argument is not a valid option (see below) then it is (mis-)interpreted
as the polynomial variable. However, since the variable in a non-constant
univariate polynomial can be deduced from the polynomial it is unnecessary
to specify it separately, except in the degenerate case that the first argu-
ment simplifies to either 0 or 0 = 0. In this case the result is returned by
i_solve in terms of the operator arbint and by r_solve in terms of the
(new) analogous operator arbrat. The operator i_solve will generally run
slightly faster than r_solve.

The (rational or integer) zeros of the first argument are returned as
a list and the default output format is the same as that used by solve.
Each distinct zero is returned in the form of an equation with the variable
on the left and the multiplicities of the zeros are assigned to the variable
root_multiplicities as a list. However, if the switch multiplicities
is turned on then each zero is explicitly included in the solution list the
appropriate number of times (and root_multiplicities has no value).

Optional keyword arguments acting as local switches allow other output
formats. They have the following meanings:

separate: assign the multiplicity list to the global variable
root_multiplicities (the default);

expand or multiplicities: expand the solution list to include multiple
zeros multiple times (the default if the multiplicities switch is on);

together: return each solution as a list whose second element is the multi-
plicity;

nomul: do not compute multiplicities (thereby saving some time);

noeqs: do not return univariate zeros as equations but just as values.
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3 Examples

r_solve((9x^2 - 16)*(x^2 - 9), x);

{
x =

−4
3

, x = 3, x = −3, x =
4
3

}

i_solve((9x^2 - 16)*(x^2 - 9), x);

{x = 3, x = −3}

See the test/demonstration file rsolve.tst for more examples.

4 Tracing

The switch trsolve turns on tracing of the algorithm. It is off by default.
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